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Abstract

A novel method for combining decision trees
and kernel density estimators is proposed.
Standard classification]) trees,or class prob-
ability trees, provide piccewise constant esti-
mates of class posterior probabilities. Ker-
nel density estimators can provide smooth
non-paramectric estimates of class probabil-
ities, but scale poorly as the dimensional-
ity of the problem increases. This paper
discusses a hybrid scheme which uses deci-
sion trees 1o find the relevant structure in
high-dimncensional classfication problemsand
then uses local kernel density estimates to
fit. smooth probability estimates within this
structure. Fxperimental results on simulated
data indicate that the method provides sub-
stantial improvement over trees or density
methods alone for certain classes of prob-
lems. The paper briefly discusses various ex-
tensions of the basic approach and the types
of application for which the method is Lest
suited.

1 INTRODUCTION

There has been considerable interest in recent years in
theuse of decision trees for classification and regres-
sion problems. Decision tree design algorithins have
been developed in both the statistical and machine
learning connnunities (Breiman et a. 1 984; Quinlan
1992) and have successfully competed with aternative
non-parametric modelling techniques (such as feedfor -
ward ncural networks).

A key advantage of the decision tree approach over
competing models is the understar qahility of the
modecl. A decision tree using univariate node-splits
is relatively easier to comprechend than models such
as ncural networks. This understandab jlity is a ma-
jor contril rotor to the widespread usc of decision t rees
in both the machine learning and applied statistics

comi nunities, rather than any inherent capability of
the decision tree modcl to outperform other predic-
tion models. In fact, decision tree models can often be
slightly less accurate than competing models in terms
of p1ediction (since the functional form of the model
is severely constrained) and yet | e preferred as the
modc] of choice for aparticular application because of
the explicit nature of themmodel. This is the starting
point for the work in this paper. Given that there
arc & variety of well-cstablishcel decision tree learn-
ing algorithms such as CART and C4 in widespread
use, the idea of using locally flexible prediction em-
bedded within the overall tree structure to improve
the local prediction accuracy of the model is explored.
In particular, we nivestigate the use of kernel density
estitnation techniques to improve the class probability
prediction capabilit ics of existing decision trees: hence,
the “retrofitting” in the title of the paper.

In cortain classification applications it is often impor-
tant that, given the input feature data, the classifier
prod uce acan ac estimates of posterior class proba-
bilit its, rather thansimply the label of the most likely
class. In speech 1 eccognition for example, the classifica-
tion component may be embedded within a larger con-
text model (typicall y a hidden Markov model) which
uses the local classification probabilitics to infer the
most likely sequence of states. More generally, pos-
terior probabilities are useful in applications such as
medical diagnosis where a decisions involving unequal
misclassification costs must be made. 1t is often the
case that thesc costs are not known preciscly in ad-
vance or may change over time.In such cases the best
the classifier designer can do is provide the decision
maker with cstimat es of class probabilities.

The standard apj»roach to producing accurate pos-
terior class probabilitics from classification trees is
known as class probability wees: one counts the pro-
portions fron cacl class which are present at the
leaf nodes, based onthe training data, and generates
a local maximum likelihood estimate (or perhaps a
smoothed variant) of the posterior class probabilities.
The goal of thisPaher is to snow that these conven-




tional estimates can be improved upon by combining
kernel density estimation methods with decision trecs.

The paper begins by reviewing the basic concepts of
kernel density estimation, focusing in particular on the
limitations of the method when applied to multivari-
ate classification. Amnalgorithi is described for com-
bining density estimation with classification trees. lx-
perimental results on synthetic data are discussed: the
hybrid dcllsity-tree approach is shown to provide sig-
nificantly better probability estimation performance
than cither the class probability tree or the kerncl
density mcthods on their own. Furthermore, analyz-
ing the class probability estimation problem from a
kernel density viewpoint can provide some iuterest-
ing insights into estimation aspects of decision tree
design. Various extensions (such as Bayesian and/or
option trees) arc briefly discussed and links to other
dimension-reduction techniques combined with den-
sity estimmation arc mentioned.

The focus of this paper is on the case of numeric (real-
valued) attributes or features, rather than the categor-
ical or discrete case: density estimation techniques are
much more relevant for numeric data, The methods
proposed in the paper can be directly extended to han-
dle mixed discrete/categorical /numeric data. In addi-
tion, the focus of thispaperison the tree-retrofitting
problem: adding density estimates to a classification
tree which was designed in a standard manner. There
are obvious extensions of density estimation to the de-
sign or cstimnation) phase of tree-1.mi]ding: these are
briefly discussed where appropriate but arc not the fo-
cus of the present paper.

2 A 1i,1tV.112 W OF KERNEL
DENSITY ESTIMATION

Non-parametric probability density estimation tech-
niques have been studied in statistics since the late
1 950’s. Texts by Hand (1 982), Silverinan (1 986) and
Scott (1 992) al provide excellent overviews of density
cstimation with emphasis on both theory and applica-
tion. Izenmann (I 991) provides a thorough overview
of recent progress on theorctical aspects of density es-
timation.

Kernel-based density estimation is the most widely
practiced density cstimation technique.  Consider
the univariate case of estimating the density f(z)
given samp]os {a;}, 1 < ¢ < N, whare p(X <

f  J@)de and [T f(a)de = 1 (X is a 1-

dnnonslmml random chab]o x € [- 00, o] denotes
values of X).The idea is quite simple: one obtains

an estimate f(ar)by summing the contributions of the
kernel K (@ — @; ) over allthe samples and normalizing

such that the estimate is itself a density, i.e,

A 1 N T — a
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|

where I is the ban dwidth of the estimator. f{z) di-
rectly inherits the properties of K(f), hence it is com-
mont 0 choose the kernel itself as a probability density
fund ion. A common choice is the Gaussian kernel,
K(f) = \%,(.(1 /2" The Cauchy kernel is defined as

K(1) =

A point x which is close to many data points z; will
receive significant contributions from the kernels as-
sociat ccl with these data points and thus the density
estimate f(2) will be large. A point 2 which is far away
from any points a;; will only receive contributions from
the tails of the associated kernels and f(x) will be rel-
atively small. Although this idea is quite simple, it is
also quite powerful: it canbe shown that provided the
kernel function itself obeys certain smoothness prop-
erties and the bandwidth b is chosen appropriately,
asymptotically as the nuinber of data points goes to
infini ty, the estimator f(z) will converge to the true
density f(2)(Hand 1982; Silverman 1986). The opti-
mal choice of I, given a fixed number of data points
N and aparticular kernel function K(.), depends on
the t1ue density function f(z) but since f(z) is un-
known (that is the object of the exercise) one must
SO1I1C' J10OW find the “best” bandwidthhifrom the data.
If I is chosen to be too small then the estimate f(x)
approaches a set of delta functions about each point
and the variance of the estimate is too high. Con-
versely if I is chosen too large, f(q) approaches the
shapce of the kerniel itself and cffectively ignores the
data: the bias of the estimate is too large. The Ap-
pendix describes a widely used cross-validation scheme
for fin ding a bandwidth value /v from the data: this is
astandard nmiethod inapplied statistics for density es-
timation and is the scheme used for all of the results
descr ibed in this paper.

- 14 where a is a scaling factor.

For the multi-dimensional case the product kernel is
comimonly Used:

i@ - Z K(z,2;,h) @)

K@aoh)= 5 hdnm( S

and d is the nunber of dimensions, z* denotes the
component in dimension & of vector z, Ki is the 1-
dimensional kernel for the kth dimension, and the
hy represent different 1 bandwidths in each dimension.
Thus the product kernel consists of the product of one-
dimensional kernels: typically in practice the same ker-
nel function is used in cach dimension, i.e., Ki(.) =

where



K (.), but the bandwidths are allowed to differ. The
aternative to the product kernel would be to use afull
multivariate kernel in Kquation (2): perhaps a Gaus-
sian kernel with a full covariance matrix. This method
has not been found very eflective in practice due to
the fact that the d(d+ 1)/2 bandwidth parameters for
a syminetric matrix must be estimated: the product
kernel only requires the estimates of d bandwidths and
is widely recommendedin theliterature and typically
used in practical situations. Although the product ker-
nel uses kernel independence in Fquation (3) this does
not imply that any form of attributc independence is
being assumed: in fact, as in the I-dimensional case, it
can be shown that the product kernel estimate asymp-
totically approaches the true density as the sample size
N increases, under the appropriate assumptions (Ca-
coullos 1966).

3 CLASSIFICATION WITH
KERNEL DENSITY ESTIMATES

Kernel density estimation can be used as the basis
for a classification method as follows. Consider that
there are mn classes, wy , ., ., wy, and denote the d-
dimensional attribute/feature vector as x. As usual,
for classification problems, there is a set of training
data available where for cach sample z;, the true
class label is known. For each class wj, take only
the training data that belongs to class jand estimate
Jiz) = f(gr|wj ) which is the density estimate for the
data from that class (in isolation, derived indepen-
dently from the other classes). fj (z) can be estimated
using the methods described in the last section. Bayes’
rule is then used for classification:

A fi@)p(w;)
Plwsla) = *::;;;‘7'(4)7("]*' 5
Li: ] fz'(Q’)P(Wz‘)
where the prior or inarginal probabilitics of each class,
p(w;), arc estimated from the datain the usual fashion.

1<3<m, (@

This classfication method has existed since the 1950's
(often referred to as “Parzen windows’) but has not
scen widespread practical use. Onc reason for its lim-
ited application in practice has been the computa:
tional complexity of the method: all of the data must
be stored and al the kernel contributions summed to
make a classification estimate. However, with modern
computation and memory capabilities this need not be
much of a problem except for very large data sets.

A more fundamental problem is the fact that density
estimation tends to scale poorly as the dimensional-
ity d of the problem increases. In particular, it can
be shown theoretically (Scott 1992) that to achieve a
constant approximation error as the nuinber of dimnen-
sions grows one needs exponentially many more exam -
ples. ‘1'bus, in practice, density estimation techniques
arcrarely used directly for high-dimensional problemns.

Natw adly, for classification tasks, this is a significant
drawback since often there may be alarge number of
attributes only some of which are relevant. Because
the kernel classificat jon method builds a density model
for the data using all of the input dimensions it maybe
relati vely inefficient. in itS use of the data compared to
a discriminative method such as a decision tree which
constructs a odel using only those dimensions which
are necessary to discriminate between classes. Thus,
given the desirable probability estimation properties of
kerncl methods, one is motivated to seek hybrid ker-
nel methods which only use the relevant discriminative
dimensions.

4 DECISION TREE DENSITY
ESTIMATORS

The key idea we introduce in this paper is as follows:
at cachnodeint he tree, estimate the posterior class
probabilities (given the input data) using a multivari-
atc hroduct kernel density estimator, where the den-
sity estimator maly uses those input features which
have beenuscdin the branch partitions leading to that
nodc. Intuitively the method tries to combine the bet-
ter aspects of botht rees and density estimators. The
motivation is two-fold:

1. Probability Estimation:

improve the classprobability estimation proper-
ties of decision t rees. Ivees provide piecewise con-
stant, probability estimates which are non-smooth
asone crosses decision boundaries, i .e.,one will
tend to get vary different class probability esti-
mates by desceniding on either side of a node with
t hreshold t. Furthermore, the class probability
estimates will be the same for all for inputs z
which fal int o aparticular leaf (or internal node):
the exact value of gz is not used in determining
1 he posterior probabilities. For problems with a
fair degrec of uncertainty (the Bayeserror rate
for the problem is relatively high) it is certainly
reasonable tocxpect that the class probabilities
may vary considerably within a particular leaf or
node, c.g., from p(w;|a) = 0.5 near the split to
plws|z) = 1.0 far away from the split. The kernel
addition proposed here replaces the non-smooth,
piecewise const ant probability estimates at each
leaf, with a smooth, non-parametric, kernel based
estimate of the posterior probability function.

2. Problem Dimensionality:
reduce the number of variables which must be in-
cluded in ther nultivariate kernel density estimate
by using t he information provided by the decision
tree structure, As discussed carlier, kernel meth-
ods will fail onhigh dimensional problems. The
hybrid incthod seeks to identify the discrimina-
tive dimensions via the trec structure and then
uses those dimensions to construct local density




cstimates.

The proposed method (details of which are provided in
the next section) can be viewed as cither a method for
fitting better probability estimmates to trees, or a way
to construct, kernel classifiers in high dimensions using
local discriminative information. Interms of decision
trees, the method in general is applicable to both (1)
tree design and (2) prediction using a particular tree:
the latter aspect can be considered “retrofitting” an
existing tree structurc with a density estimator. In this
paper we will only consider the “retrofitting” aspect of
the problemn there arc several interesting avenues to
explorein terms of tree design combined with density
cstimation, but these are not pursued in detail here.

The hybrid density-tree idea is well-suit)cd to certain
kinds of problems. In particular it is suited to high-
dimensional problems where accurate class probability
estimates arc desirable and the Bayces error rate is not
too low. If the | 3ayes crror rate for the problem is very
low, then all of the posterior class probabilities will be
close to 1 or O and thercis little advantage to using a
kernel density estimator and a standard decision tree
classifier should be preferred (the piccewise constant,
estimates of the trees will work fine). Similarly, if the
problem is low-dimensional, then the kernel density
estimator can be used dircctly.

5 DETAILS ON DECISION TREE
DENSITY ESTIMATORS

The basic tree-dcllsity algoritlun for the results de-
scribed in this paper operates as follows:

1. Density Estimation:
Run a kernel density bandwidth estimation
method on the training data (such as that de-
scribed inthe Appendix) to select bandwidths k.,
1 <k <d, for each of the input dimensions and
for cach of the classes w;, 1 <j<m.

2. Decision Tree Design:
Generate a classification tree from the training
data using a standard decision tree design algo-
rithm, e.g., CART', C4, etc. If pruning is part of
the basic agorithm (as in CART)then produce a
pruncd tree as the final result.

3. Retrofitting the Decision Tyece for Predic-
tion:
To perform class probability prediction on a new
data point z:
3.1 Pass the test data point down the tree in
the usua manner to a leaf node.

3.2 Generate alocal density estimate for each
class as follows:

o= 235 10 7

i1 kq)ath

J

where k¢ path denotes that the product is taken
omly over those attributes which appear in tests
onthe path fro]!] t he root to that particular leaf,
N; is the number of training data pomts which

1 )('long to class wj, and the sum Zl )} is taken
10 be over only training data points belonging to
class wj.

3.3 Estimate the class probabilities, p(wj|z),
using the density estimates from Equation (5)
combined with 1 3ayes’rule (Equation (4)).

Many variations on this basic theme exist. For exam-
ple, the density estimates could also be used as part of
the t 1 cc design phasce. 1 3ayesian averaging over option
trees or sinoothing over internal nodes could aso be
incorporated directly. Alternative density estimation
methods are possible, such as localy adaptive meth-
ods or kernel techniques which avoid Bayes’ rule and
seek to estimate p(w, |¢) directly (Lauder 1983) but
still use the informationin the tree structure.

For the purposes of this paper we have restricted our
attention to the simple method described above in or-
der to evaluate the potential utility of the overal idea

6 KXPERIMENTAL RESULTS

6.1 EXPERIMENTAL DATASETS

In terms of probability estimation, the class proba-
bilitics p(w;la;), where 2,1 <i< N, is a datum
from the training data set, are typically not known for
real-world training data scts: al one typically knows
aret he clusslabels 1 »ut not the posterior probabili-
tics given z,. Thus, to accurately assess the perfor-
mance of a class probability estimator one needs to
usc s mulated data for which the true posterior proba-
bilitics are known. (Note that an alternative approach
isto estimate the difference between the probability
cstimates and the true probabilities via the half-Brier
scorc (1 3untine and Caruana 1992), which essentially
substitutes “ 1" o1 * O" for the true probability depend-
ing on which class is true however, this canbcan
inaccurate estimate when the sample size is small and
the 1 robabilities themselves are not near Oorl).

We chose sorne deeeptively simple simulated problems
to test the mnethodology: variants of a 2-class prob-
lem where the data for each class are distributed in a
Gaussian manner with 12 dimensions. The two classes
diflcronly in 1 or 2 dimensions depending on the prob-
lem: thus, from a discriinination/classification point of
view there are 11 or 10 irrelevant noise dimnensions.

.« PProblem1:‘1 'he two classes only differ in 1 dimen-
sion, p100, iy = 1, o7= 02 = 1. thus, there is
significant overlap in this dimension. Both classes
are equally likely. The 1 3aycs error rate (the min-
imum achicvable error rate for the problem) is




about 0.31. The other 11 dimensions are inde-
pendent and consist of zero-mcatl unit-variance
Gaussian noise. The optima] decision rule for the
problem consists of a single split along the first
dimension.

. Problem 2: This is the same as Problem 1 except
that theincan of the sccond class is now 2 ==
(ﬁ/Q,\/Qﬂ) in the first two dimensions and the
covariance matrix inthe first two dimensions is
0.51 where I is the identity matrix. The mean fo
al dimensions (except the first two dimensions
of class 2) is zero: so the other 10 dimensions
arcirrelevant. The optimal decision boundary for
this problem is only a function of the first two
dimensions but is quadratic rather than linear.
The Bayes error rate is about 0.23.

. Problem 3: Class 1 is distributed in the same
manner as in problems 1 and 2, but class 2 is now
a mixture of 2 components in the first 2 dimen-
sions: one is centred at (- /2, — v/2), the other
at (\/i, \/i) and cach component has covariance
matrix of 0.5].Class onc is defined to have a
prior probability of 1/3 and class 2 2/3 for this
problem.. Once again the mean for all dimen-
sions (except the first two dimensions of class 2)
is zero: so the other 10 dimensions are irrclevant
and the optimmal decision boundaries arc a non-
lincar function of the first two dimensions for the
problem. The Bayes error rate for this problemn is
estimated to be about 0.14.

Several other simulated problems were used to test the
methodology but arc not reported here - all were vari-
ants of low-dimensional Gaussian or mixture of Gaus-
sians embedded in a higher dimensional space. In all
experimnents the results were qualitatively the same as
those described below.

6.2 EXPERIMENTAL METHODOLOGY

We monitored both the classification error rate and the
probability estiination error for a variety of classifiers
as afunction of sample size. We varied sample training
sizes from S to 2048.¥or a given sample size, 20 inde-
pendent training sets were generated according to the
probability models described above (for Problems (1),
(2) and (3)). Each classifier was trained on each of the
20 independent training datasets. Theerrorrate of
cach Classifier, for a given training data set for a par-
ticular samplesize, was evaluated cmpirically on an
independent test set of 3000 samples. The mean error
rate of a particular classifier over the 20 training data
sets was then calculated, along with the standard de-
viation. our experimental results are thus in the form
of mean error rates for agiven classifier as a function
of samplesize. The standard deviations of the means
arc not shown on the graphs to reduce clutter.

Calculation of classification error rate on the test set
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Figm e 1: Mean @ solut ¢ error for class probabilities
as a function of training sample size for Problem 1

was carried out inthe standard manner. calculation
of theestimationerror for qass probabilities typically
can he carried out using a variety of methods. We
chosc to use the ;mean absolute distance:

Niear m
) 1 ~ 1 ¢~ .
Ih=- o > 'm} \p(wjlz;) — plwslz;)|,  (6)
et sy U i

where Nyeqt iS the number of test data points.

6.3 CLASSIFIERS USED

For our standard decision tree classifiers we used both
the CART and C4 algorithms as implemented in the
IND software package (Buntine and Caruana 1992),
using default scttings. For density estimation we used
the product kernel density method described in Sec-
tions 2 and 3 (and cross-validation method as in the
Appendix). We experimented with both Gaussian and
Cauchy kernel shapes (Silverman 1986) to get arough
idea of the sensitivity of the method to kernel shape.
We also included amaxit nun-likelihood Gaussian clas-
sifier using separate full covariance matrices which are
estimatedfromthe dat a for each class.

Other decision tree mnethods were experimented with,
such as 11)3. Ingencral we found that trees that did
not use pruning or ¢1 oss-validation were unable to find
the relevant dimensions for the problemn and, thus, the
results arc not showtion the plots.

6.4 DISCUSSION OF EXPERIMENTAL
RESULTS

Figuies 1 and 2 show the probability estimation er-
ror anid the classification] error rate, respectively, as a
function of sample size for Problem 1. Both figures
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Figure 2: Mcan classification crror as a function of
training sample size for Problem 1

clearly demonstrate the benefit of using only the rele-
vant dimensions: the full Gaussian and density estima-
tion models (Gaussian and DE, respectively) converge
slowly to the optimal error rates, while the methods
which try to select the relevant dimensions (CART and
CARTH-DE(G) ) arc substantially more accurate. The
“G” in “CART+DE(G)” and “DE(G) " refers to the
fact that for this problem the results are shown for the
densily estimation method using the Gaussian kernel.
CARTHDE is significantly better than CART alone
in terms of probability approximation (Figure 1 (@)) as
onc might expecet.

Note that CART dots not converge to the oftimal
asymptotic error of zero as the sample size increases
duc to its piecewise constant probability estimation
function which acts as a llol]-zero bias term indepen-
dent of the sample size. It is also worthy of note that
for these data sets, CART performs significantly bet-
ter than C4. Wc suspect that the reason for this is that
the pruning methods used in CART happento be more
appropriate for these problems where the optimal de-
cision tree solution consists of a very small decision
tree. In order to avoid clutter in the presentation of
the results, we show the results of the tree+-density
method only for CART. Wc provide the C4 curve just
as reference baseline for how another tree algorithm
performs.

In terms of classification accuracy (Figure 2),
CARTH-DE appears slightly more accurate than
CART although this difference is probably not signifi-
cant. This is not surprising since onc would expect on
average that if a model produces more accurate class
probability estimates that it will alsobe more accu-
rate in its classifications although clearly this nced not
always be true since the minimum error rate classifier

Mean Absolute Error in Class Probability Estimates

0.6 e | T CART
Mean —aA---CART+DE(C)
Absolat N
i —+ -DEQ)
on 1 est 0.5 —x - Gaussian
Data eeeoC4
0.4
i e PR P----e
—
\ T e
. —8—n
0.1 o N \-4\.'.“5‘.\ . o
a~ ":""‘<'§
01w o Lia
10 100 1000

1 raining Sample Size

Figur ¢ 3: Mean absolute error for class probabilities
asa function of training samplesize for Problem 2

need only know wher ¢ the optimal decision boundaries
arc located irrespective of the values of the class prob-
ability ies.

The curve for density estimationin 12 dimensions (la-
beled DE(G) or DE(C)in the figures) shows how den-
sity estimation benefits fromn the dimensionality reduc-
tion provided by the tree structure. Without the tree
addition (CART-DE), the density cstimation method
(DE) is quitcinaccurate.

The Gaussian classifier, which is asymptotically the
optitnal classifier for this problemn, exhibits the usual
Tl\; scaling performance, where N is the number of
training samples: note that even at 2048 samples it
still has not rcached the accuracy of the CART+DE

method.

For 1 'roblem 2 we show the results for the Cauchy ker-
nel (CARTH 1) N(C)) to illustrate that for these prob-
lems at least the treel density mcthod dots not ap-
pear over-scimitivc to the exact shape of the kernel
used in the density estimation phase. Figures 3 and 4
show the probability approximation error and classifi-
cation error respectively as a function of sample size.
The results are qualitatively similar to those obtained
for 1 'roblem 1, namely that the CART+DE method
outperforms the other methods over a wide range of
sam] sle sizes: the ouly difference is that the Gaussian
modcl converges more quickly as a function of sample
size for this problem, rclative to the others, probably
due 10 the fact that 2 of 12 dimensions are now relevant
rather than just one in the first problem.

Figures 5 and 6 show the corresponding results
for I’roblem 3. 1 lcrc we plot only the tree and
tree-l density results to clearly demonstrate the bene-
fits of the retrofitting approach. Both CART+DE(G)
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Figure 4: Mean classification error as a function of
training sample size for Problem 2

and CA RT4-DE(C) dominate the performance of the
tree methods over a wide variety of sample sizes. The
Gaussian kernel method outperforms the Cauchy ker-
nelmethod, probably duc to the fact that underlying
densities for the problem are themselves Gaussian, and
CART outperforms C4 due its tendency to prune to
smaller trees.

The main point to note from the experimental results
in total is that the treed-density methods can provide
significant improvement in terms of class probability
cstimation across a variety of problems and training
sample sires, while the classification accuracy of the
resulting tree is not affected adversely andin many
cascs appears tobe dightly improved. The empirical
results, combined with our understanding of the basic
theory, indicate that the combination of robust tree al-
gorithms and accurate density estimators can produce
useful results.

7 RELATED WORK, EXTENSIONS,
AND DISCUSSION

Buntine (1 993) investigated a Bayesian approach to
both tree design and prediction. For class probabil-
ity prediction, Buntine advocates averaging the class
probability estimates obtained at internal nodes in or-
der to get the best estimate and also discusses averag:
ing over multiple tree structures ( “option trees’ ).

Walker (1 992) has investigated the following probleni:
using the same data to generate the class probabil-
ity cstimates as is used to design the tree will result
in biased ecstimatesinpractice since the tree design
process favors splitting the feature space into regions
where the class probabilities appear to benearzero
or one. Walker investigated the use of various cross-
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Figui¢ 5: Mcan absolute error for class probabilities
as a function of training sample size for Problem 3
(mixture classification problem)

validation strategies to deal with this problem and
demonstrated improved probability estimation perfor-
mance compared to the standard approach.

Both of these abiroaches complement the general
methiod proposed in this paper and indeed the method
pro] »osed here could likely beimproved upon were it to
incor porate cither of the I3ayesian or cross-validation
strategies.

Fricdman (1995) proposes sophisticated data-driven
classification strategies which depend on loca selec-
tion of relevant distance metrics for near neighbor
type algorithms. The overall approach is partly mo-
tivated by similar concerns to those expressed in this
paper, namely, that standard decision trec methods
are limited to piccewise-constant class probability es-
timates. However, Friedman’s work appears primar-
ily 1notivated by a desire to improve model prediction
capabilitics , resulting in complex modecls which are
essentially nearest-neighbor in form and (unlike the
met hod proposed here) do not possess the understand-
ability of the decisiontree structure.

As I nentioncd earlier, there are a variety of potentia
extrusions of the 1 jasic method described here. De-
cisic m tree density estimators canin principle can be
ext ended to regression trees, trees with multivariate
splits, smoothed class probability prediction over inter-
nal nodes, averaging over multiple trees and so forth.
The use of density estimation during decision tree de-
sigi is dso possihle: for small sample sires at nodes
being considered for ] )lits, the density estimate could
serve to imj move the estimates of split criteria and per-
ha] »s produce more refined estimates of the location of
the best split.
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Figaro 6: Mean classification error as a function of
training sample size for Problem 3 (mixture classifica-
tion problem)

From a density estimation viewpoint, the proposed
method is probably most closely related to projection
pursuit density cstimation (Silverman 1986): i this
method, “interesting” low-dimensional projections of
a high-dimensional dataset are found and density es-
timation is performed in this low-dimensional projec-
tion. This technique is usually carried out in the con-
text of unsupervised learning or clustering. The pro-
posed decision tree density estimators could be viewed
as a supervised learning analog to the projection pus -
suit methods.

A reasonable question to ask is whether one sacrifices
the interpretability of a decision trec classifier using
this method? T'his should not be the case. The struc-
ture of the tree is retained but a more complicated
kernel model is used for prediction. Thus a user can
still interpret the structure Of the tree in terns of
which variables are relevant to the classification prot»
lem, but underlying the tree structure is a more com-
plex, memory-based, prediction scheme (which is not
of dircct concern to the user). Thins, for explanation
purposcs one can dill retain the tree structure.

8 CONCLUSION

A novelmethod for combining decision trees ant] ker-
ne} density cstimators was proposed. On simulated
data sets the inethod was demonstrated to provide iin-
proved performance in terms of class probability esti-
mation over cither trees or density methods alone. The
method is particularly useful for classification prob-
lems where class probability cstimmates are important,
and where there is a relatively sinall amount of train-
ing data relative to the ditnensionality of the problem
(which frequently occurs in practical problems of iu-

terest )
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Appendix: Univariate Bandwidth Selection
for Kernel Density Estimation

Choice of a good bandwidth value h canbe difficult.
The theoretically optimal value (in terms of minimis-
ing the mean integrated square error between the es-
timate and the true density) is a function of the un-
known density f(z). Hence, in practice, various data-
dependent techniques are used to estimate h from the
data. Choosing h too small results in a very “spiky”
estimate, while too large a value for i smooths out
the details. The maximum likelihood solution for h
is degenerate in the sense that choosing £ = O max-
imises thie likelihood resulting in a density estimate
which has dclta functions at each training data point.
Hence, cross-validation techniques have been widely
used in practice (Silverman 1986). Onc such method
is to maximise the “pscudo-likelihood”: letting

x (7.;%) )

7= 1,577

N

. 1
@)= v 2y
the optimal cross-validation choice is

N
] # )
hov = argm’?x{ N E,,] log f; (a,i)} (8)

The negative of the term in brackets can be shown 1o
be an unbiased estimator of the expected cross-entropy

between f () and f{@). An alicrnative to likelihood
cmss-validation} is least-squares cross-validation.

For the results reported in this paper we estimate the
bandwidth in cach dimnension, for cach class, indepen-
dently. The data is initially scaled in each dimension
to have unit variance and zero mean. Then, hcv is
found using an exhaustive grid secarch where the grid
width is 0.01and the scarch is over L € [0.2,0.8].




